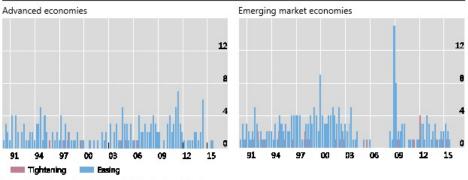
Reserve Requirements as a Financial Stability Instrument

First Conference on Financial Stability and Sustainability

Carlos Cantú¹ Rocio Gondo² Berenice Martinez¹

¹Bank for Interational Settlements


²Central Reserve Bank of Peru

20-21 January, 2020

Motivation

Reserve requirement index

Number of countries

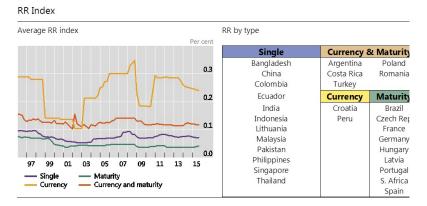
Source: Federico, Vegh and Vuletin (2014); author's calculations.

Non-technical Summary

Focus

What is the trade-off between using reserve requirements (RR) as a macroprudential tool to prevent the buildup of financial vulnerabilities vs using it as a financial policy tool to smooth credit cycles?

Contribution


We estimate the impact of RR through a cost-benefit analysis that considers financial cycle smoothing and financial risk build-up. First, we calculate the expected losses after a tightening of RR. Then we compare it to the benefit in terms of the reduction in financial risk buildup as determined by the expected credit/output gains as a result of lower probabilities of financial distress.

Findings

- The trade-off gives more weight to the lower incidence and frequency of financial distress compared to the cost of reducing credit growth through the cycle.
- RR have a greater effect for emerging markets (EME) than for advanced economies (AE).
- Single RR and RR by maturity have a greater effect than RR by currency.

Data

- Sample: 28 countries (5 AE/23 EME), data from 1996Q1 to 2015Q3.
- RR index constructed with legal changes.¹

¹Federico, Vegh and Vuletin (2014)

Cantú Gondo Martinez (2020)

- Fernandez and Guidotti (1996): changes in RR affects bank funding structure (mix between capital and deposits)
- Glocker and Towbin (2011): increase RR as tax on deposits
 - fall in deposit rate, deposits and increase in consumption. Lower bank funding leads to lower credit and investment.
 - ▶ In a SOE, lower capital inflows, exchange rate depreciation, higher net exports.
- Aikman et al (2016) tightening of MaPP tool reduces credit growth and the probability of financial crisis.

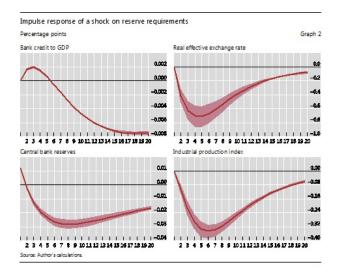
- Behn et al (2016): empirical cost-benefit analysis of using capital based MaPP at the bank level for EU countries.
- Cordella et al (2012): RR as an effective instrument for countercyclical policies when there are concerns of effects of MP on exchange rates.
- Montoro and Moreno (2011): use of RR in Latin America, tightening of financing conditions without attracting capital inflows.

・ロト ・ 同ト ・ ヨト ・ ヨト

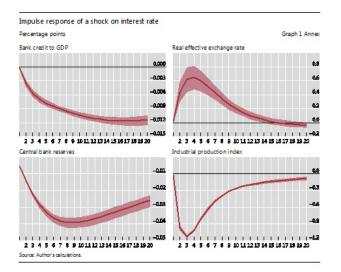
Smoothing of credit cycles

We estimate the following VAR:²

$$Y_{t} = a_{0} + \sum_{i=1}^{p} A_{i} Y_{t-i} + \sum_{i=1}^{p} B_{i} X_{t-i} + U_{t}, \quad E(U_{t} U_{t}') = \Sigma$$
(1)


•
$$Y_t = IPI_t, CPI_t, BC2GDP_t, REER_t^3, IR_t, RR_t, CBRes_t, Cap_t$$

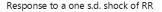
•
$$X_t = GRisk_t, GLiq_t, GIR_t, GCommP_t$$

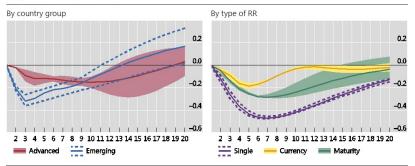

- Financial costs are given by the response of bank credit over GDP (*BC2GDP*) to a one standard deviation shock in RR.
- Macroeconomic costs are given by the response of industrial production (*IPI*) to a one standard deviation shock in RR.

²All variables in yoy growth rates, except IR and GIR in deviations ³Appreciation=Increase, Depreciation = Decrease

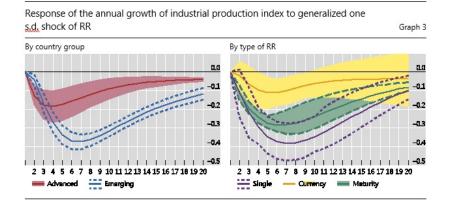
Impulse Response Functions: RR shock

Impulse Response Functions: MP shock




Cantú Gondo Martinez (2020)

Reserve Requirements as a Financial Stability Instrume


э

Financial costs by group and type of RR

Macroeconomic costs by group and type of RR

Impact of global financial factors on domestic variables in EME

- Global risk generates an exchange rate depreciation (capital outflows/flight to quality?), lower output growth, higher inflation
- In MP normalistation in AE: lower global liquidity and higher MP rates in AE
 - Lower liquidity in global financial markets: exchange rate depreciation and reduction in IPI growth,f lower external funding for domestic banking sector in EME.
 - Increase in MP rates: Exchange rate depreciation, lower external funding to EME, lower credit growth and IPI growth.
 - RR are expected to be used as a complement to domestic MP by reacting countercyclically to smooth credit cycles while MP reacts to contain inflationary pressures coming from XR passthrough to inflation.

Impact of global financial factors on domestic variables in EME

Table: Effect of globa	l variables on domestic variables
------------------------	-----------------------------------

	Grisk	GIR	GLiq	GGrowth	GCommP
IPI	-0.009*	-0.546*	0.264*	0.439*	0.040*
REER	0.000	-0.788*	0.003*	0.127*	0.018*
Credit to GDP	0.000	-0.001*	0.000	0.000	0.000
Interest rate	0.005*	0.140*	0.040*	-0.082*	-0.003*
RR index	0.000	-0.001*	0.000	0.000	0.000

*, **, * * * refer to P - value < 1%, 5% and 10%, respectively.

- For each country *i* date financial stress episodes $y_{it} = 1$.
- Stimate a logistic-based early warning system model

$$P(y_{it} = 1) = \frac{exp(\alpha_i + X'_{it}\beta)}{1 + exp(\alpha_i + X'_{it}\beta)}$$
(2)

 $X_{it} = RR$, Credit to GDP gap, GDP, inflation, policy rate, exchange rate, plus global and banking sector controls.

• Benefit = $-\Delta$ prob * credit (IPI) loss

Financial Distress Index

Index of financial distress in stock market (STX)

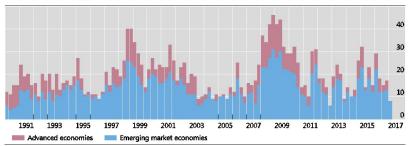
$$VSTX = \frac{\sum_{i=0}^{19} |\Delta \log(r\tilde{STX}_{t-i})|}{20}, \quad CSTX_t = 1 - \frac{rSTX_t}{\max_{i=0}^{521} rSTX_{t-1}}$$
(3)

Index of financial distress in exchange rate market (FX)

$$VFX = |\Delta log(\tilde{REER}_t)|, \quad CFX_t = |REER_t - REER_{t-6}|$$
 (4)

Aggregation

$$\hat{Z} = F_n(Z_t < Z) \quad Z_t \in VSTX, CSTX, VFX, CSTX$$
$$I_{STX} = \frac{VSTX + CSTX}{2} \quad I_{FX} = \frac{VFX + CFX}{2}$$


Financial distress index (FSI)

$$FSI_t = I_t \cdot C_t \cdot I'_t \qquad I_t = [I_{STX}, I_{FX}]$$
(5)

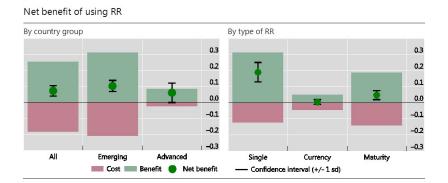
イロト イヨト イヨト イヨト

Financial Distress Episodes

Financial distress episodes

イロト イヨト イヨト イヨト

Logistic Early Warning System Model⁴

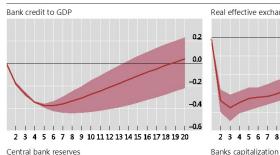

Marginal effects on the probability of a financial distress episode									
	By country group			By type of RR					
	All	EMEs	Advanced	Single	Maturity	Currency			
Reserve Requirements (t-1) (Easing)	-2.498	-2.316	2.651	-2.013	-2.797	-0.783			
Reserve Requirements (t-8) (Tightening)	-0.960	-1.135	8.648	-1.740	-0.575	0.404			
Credit to GDP gap (t-1)	0.74	0.47	4.56	0.48	3.57	0.50			
GDP (t-1)	-1.89	-1.52	-2.64	-1.90	-1.82	-2.84			
Inflation (t-1)	1.43	1.43	-0.22	1.96	1.56	1.55			
Policy rate (t-8)	0.48	0.44	-0.43	0.38	0.72	0.77			
Exchange rate (t-2)	-0.19	-0.19	-0.34	0.34	-0.60	-0.26			
Total RR effect	-3.458	-3.451	11.299	-3.753	-3.372	-0.379			
p- <u>val</u> <0.01; p- <u>val</u> <0.05; p- <u>val</u> <0.1									

⁴Model includes global and banking sector controls

- E - N

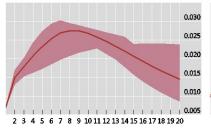
イロト イヨト イヨト イ

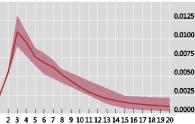
Net Benefit: preliminary results


э

Conclusions

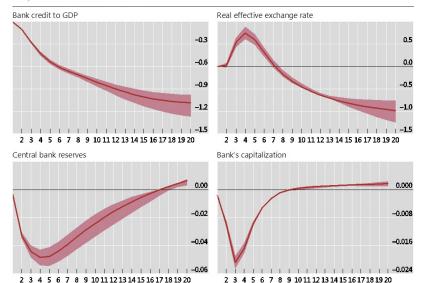
- The benefit of using RR is that it can reduce the build-up of systemic risk and the incidence and severity of financial distress episodes. On the other hand, the cost of using RR is associated with a reduction of credit in normal times.
- We find that the net benefits of using RR are positive. Therefore, using this macroprudential policy as a financial stability tool is quite useful.
- RR have a greater effect on EME than on AE. Single RR and RR by maturity have a greater effect than RR by currency.


Annex. Impulse Response Functions: RR shock


Response to a one s.d. shock of RR

Real effective exchange rate 0.0 -0.2 -0.4 -0.6 -0.8 -1.09 10 11 12 13 14 15 16 17 18 19 20 8

Central bank reserves



Cantú Gondo Martinez (2020)

Reserve Requirements as a Financial Stability Instrume

Annex: Impulse Response Functions: MP shock

Response to a one s.d. shock to IR

Cantú Gondo Martinez (2020)

Reserve Requirements as a Financial Stability Instrume

Discussion: Reserve Requirements as a Financial Stability Instrument

OSCAR PASCUAL GUTIÉRREZ

Overview of the paper

- Paper discusess the benefits and costs of using Reserve requirements (RR) with a financial stability objetive
- Main findings:
 - 1. RR are an effective financial stability tool. Benefits from a lower probability of financial distress are higher than the costs of reduction in economic activity
 - 2. The effectiveness of RR depends on market structure and access to alternative sources of funding
 - 3. Effects of RR are greater in emerging market economies
 - 4. The effectiveness of RR depends on the type of liabilities that they target
- Interesting paper which adds to the growing literature on factors to consider when introducing macroprudential tools.

Commonly used macroprudential instruments

Tools to address threats from excessive credit expansion

- Time-varying capital requirements
- Leverage ratio
- Dynamic provisions
- Ceilings on credit or credit growth
- Caps, possibly time-varying, on loan-to-value (LTV) ratio,
- Caps, possibly time-varying, on debt service-to-income (DTI) ratio
- Reserve requirements

Tools to address key amplification mechanisms of systemic risk

- Limits on maturity mismatches
- Caps on foreign currency lending
- Limits on net open currency
- Liquidity requirements (LCR, NSFR)

Macroprudential framework – Peruvian case

- There is no designated macro prudential authority (informal arrangement between BCRP and SBS).
- SBS tools:
 - Capital conservation buffers
 - Countercyclical capital requirements
 - Dynamic provisions
 - Liquidity requirements (Liquidity Coverage Ratio)
 - Limits on net open currency, Limits on derivatives
 - Capital surcharges for a range of risks.
- BCRP tools:
 - Reserve requirements,
 - FX credit limits,

Discussion

- Effective macroprudential frameworks require institutional arrangements
- Resolve conflicts among policy objectives and macroprudential instruments, and choose the right tools to mitigate systemic risk.

Further questions:

- Is the RR the most appropriate macroprudential tool in all cases? A unique macroprudential instrument cannot cover all aspects of systemic risk.
- Further analysis to evaluate the impact on the effectiveness of the monetary policy reference rate
- Is there any interaction with other macro-prudential tools (such as LCR and NSFR)?